Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 3609, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32107410

RESUMO

Acid-base homeostasis is critical for normal growth, development, and hearing function. The sodium-hydrogen exchanger 6 (NHE6), a protein mainly expressed in early and recycling endosomes, plays an important role in regulating organellar pH. Mutations in NHE6 cause complex, slowly progressive neurodegeneration. Little is known about NHE6 function in the mouse cochlea. Here, we found that all NHE isoforms were expressed in wild-type (WT) mouse cochlea. Nhe6 knockout (KO) mice showed significant hearing loss compared to WT littermates. Immunohistochemistry in WT mouse cochlea showed that Nhe6 was localized in the organ of Corti (OC), spiral ganglion (SG), stria vascularis (SV), and afferent nerve fibres. The middle and the inner ears of WT and Nhe6 KO mice were not different morphologically. Given the putative role of NHE6 in early endosomal function, we examined Rab GTPase expression in early and late endosomes. We found no change in Rab5, significantly lower Rab7, and higher Rab11 levels in the Nhe6 KO OC, compared to WT littermates. Because Rabs mediate TrkB endosomal signalling, we evaluated TrkB phosphorylation in the OCs of both strains. Nhe6 KO mice showed significant reductions in TrkB and Akt phosphorylation in the OC. In addition, we examined genes used as markers of SG type I (Slc17a7, Calb1, Pou4f1, Cal2) and type II neurons (Prph, Plk5, Cacna1g). We found that all marker gene expression levels were significantly elevated in the SG of Nhe6 KO mice, compared to WT littermates. Anti-neurofilament factor staining showed axon loss in the cochlear nerves of Nhe6 KO mice compared to WT mice. These findings indicated that BDNF/TrkB signalling was disrupted in the OC of Nhe6 KO mice, probably due to TrkB reduction, caused by over acidification in the absence of NHE6. Thus, our findings demonstrated that NHEs play important roles in normal hearing in the mammalian cochlea.


Assuntos
Endossomos/metabolismo , Perda Auditiva/metabolismo , Neurônios/fisiologia , Órgão Espiral/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Gânglio Espiral da Cóclea/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Perda Auditiva/genética , Concentração de Íons de Hidrogênio , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Órgão Espiral/patologia , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Trocadores de Sódio-Hidrogênio/genética
2.
Audiol Neurootol ; 24(2): 65-76, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31117067

RESUMO

Insulin receptors are expressed on nerve cells in the mammalian brain, but little is known about insulin signaling and the expression of the insulin receptor (IR) and glucose transporters in the cochlea. We performed immunohistochemistry and gene/protein expression analysis to characterize the expression pattern of the IR and glucose transporters in the mouse organ of Corti (OC). We also performed glucose uptake assays to explore the action of insulin and the effects of pioglitazone, an insulin sensitizer, on glucose transport in the OC. Western blots of protein extracts from OCs showed high expression of IR and glucose transporter 3 (GLUT3). Immunohistochemistry demonstrated that the IR is specifically expressed in the supporting cells of the OC. GLUT3 was found in outer and inner hair cells, in the basilar membrane (BM), the stria vascularis (SV), Reissner's membrane and spiral ganglion neurons (SGN). Glucose transporter 1 (GLUT1) was detected at low levels in the BM, SV and Reissner's membrane, and showed high expression in the SGN. Fluorescence glucose uptake assays revealed that hair cells take up glucose and that addition of insulin (10 nM or 1 µM) approximately doubled the rate of uptake. Pioglitazone conferred a small but nonsignificant potentiation of glucose uptake at the highest concentration of insulin. Gene expression analysis confirmed expression of IR, GLUT1 and GLUT3 mRNA in the OC. Pioglitazone significantly upregulated IR and GLUT1 mRNA expression, which was further increased by insulin. Together, these data show that insulin-stimulated glucose uptake occurs in the OC and may be associated with upregulation of both the IR and GLUT1.


Assuntos
Glicemia/metabolismo , Cóclea/metabolismo , Receptor de Insulina/genética , Animais , Animais Recém-Nascidos , Western Blotting , Feminino , Glucose , Proteínas Facilitadoras de Transporte de Glucose , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 3/genética , Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Transporte de Monossacarídeos , Miosina VIIa/genética , Neurônios/metabolismo , RNA/genética , RNA Mensageiro/genética , Transdução de Sinais
3.
Cell Death Dis ; 10(2): 110, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728348

RESUMO

Gentamicin is a widely used antibiotic for the treatment of gram-negative bacterial infections; however, its use often results in significant and permanent hearing loss. Hearing loss resulting from hair cell (HC) degeneration affects millions of people worldwide, and one major cause is the loss of sensory HCs in the inner ear due to aminoglycoside exposure. Strategies to overcome the apparently irreversible loss of HCs in mammals are crucial for hearing protection. Here, we report that the somatostatin analog pasireotide protects mouse cochlear HCs from gentamicin damage using a well-established in vitro gentamicin-induced HC loss model and that the otoprotective effects of pasireotide are due to Akt up-regulation via the PI3K-Akt signal pathway activation. We demonstrate active caspase signal in organ of Corti (OC) explants exposed to gentamicin and show that pasireotide treatment activates survival genes, reduces caspase signal, and increases HC survival. The neuropeptide somatostatin and its selective analogs have provided neuroprotection by activating five somatostatin receptor (SSTR1-SSTR5) subtypes. Pasireotide has a high affinity for SSTR2 and SSTR5, and the addition of SSTR2- and SSTR5-specific antagonists leads to a loss of protection. The otoprotective effects of pasireotide were also observed in a gentamicin-injured animal model. In vivo studies have shown that 13 days of subcutaneous pasireotide application prevents gentamicin-induced HC death and permanent hearing loss in mice. Auditory brainstem response analysis confirmed the protective effect of pasireotide, and we found a significant threshold shift at all measured frequencies (4, 8, 16, 24, and 32 kHz). Together, these findings indicate that pasireotide is a novel otoprotective peptide acting via the PI3K-Akt pathway and may be of therapeutic value for HC protection from ototoxic insults.


Assuntos
Antibacterianos/efeitos adversos , Gentamicinas/efeitos adversos , Células Ciliadas Auditivas/efeitos dos fármacos , Perda Auditiva/induzido quimicamente , Hormônios/uso terapêutico , Ototoxicidade/etiologia , Somatostatina/análogos & derivados , Animais , Feminino , Hormônios/farmacologia , Humanos , Masculino , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Somatostatina/farmacologia , Somatostatina/uso terapêutico
4.
PLoS One ; 12(11): e0188596, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29182629

RESUMO

Various insults cause ototoxicity in mammals by increasing oxidative stress leading to apoptosis of auditory hair cells (HCs). The thiazolidinediones (TZDs; e.g., pioglitazone) and fibrate (e.g., fenofibrate) drugs are used for the treatment of diabetes and dyslipidemia. These agents target the peroxisome proliferator-activated receptors, PPARγ and PPARα, which are transcription factors that influence glucose and lipid metabolism, inflammation, and organ protection. In this study, we explored the effects of pioglitazone and other PPAR agonists to prevent gentamicin-induced oxidative stress and apoptosis in mouse organ of Corti (OC) explants. Western blots showed high levels of PPARγ and PPARα proteins in mouse OC lysates. Immunofluorescence assays indicated that PPARγ and PPARα proteins are present in auditory HCs and other cell types in the mouse cochlea. Gentamicin treatment induced production of reactive oxygen species (ROS), lipid peroxidation, caspase activation, PARP-1 cleavage, and HC apoptosis in cultured OCs. Pioglitazone mediated its anti-apoptotic effects by opposing the increase in ROS induced by gentamicin, which inhibited the subsequent formation of 4-hydroxy-2-nonenal (4-HNE) and activation of pro-apoptotic mediators. Pioglitazone mediated its effects by upregulating genes that control ROS production and detoxification pathways leading to restoration of the reduced:oxidized glutathione ratio. Structurally diverse PPAR agonists were protective of HCs. Pioglitazone (PPARγ-specific), tesaglitazar (PPARγ/α-specific), and fenofibric acid (PPARα-specific) all provided >90% protection from gentamicin toxicity by regulation of overlapping subsets of genes controlling ROS detoxification. This study revealed that PPARs play important roles in the cochlea, and that PPAR-targeting drugs possess therapeutic potential as treatment for hearing loss.


Assuntos
Cóclea/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Estresse Oxidativo , PPAR alfa/agonistas , PPAR gama/agonistas , Tiazolidinedionas/farmacologia , Animais , Cóclea/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pioglitazona , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...